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Unified Green’s function retrieval by cross-correlation; connection with energy principles
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It has been shown theoretically and observationally that the Green’s function for acoustic and elastic waves
can be retrieved by cross-correlating fluctuations recorded at two locations. We extend the concept of the
extraction of the Green’s function to a wide class of scalar linear systems. For systems that are not invariant
under time reversal, the fluctuations must be excited by volume sources in order to satisfy the energy balance
(equipartitioning) that is needed to extract the Green’s function. The general theory for retrieving the Green’s
function is illustrated with examples that include the diffusion equation, Schrodinger’s equation, a vibrating
string, the acoustic wave equation, a vibrating beam, and the advection equation. Examples are also shown of
situations where the Green’s function cannot be extracted from ambient fluctuations. The general theory opens
up new applications for the extraction of the Green’s function from field correlations that include flow in
porous media, quantum mechanics, and the extraction of the response of mechanical structures such as bridges.
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I. INTRODUCTION

The extraction of the Green’s function from ambient fluc-
tuations for acoustic and elastic waves has recently received
much attention: see recent tutorials and reviews [1,2], and
the special supplement on seismic interferometry in Geo-
physics [3]. Derivations of this principle have been based on
normal modes [4], on representation theorems [5,6], on the
superposition of incoming plane waves [7-9], on time-
reversal invariance [10,11], and on the principle of stationary
phase [12-15]. The extraction of the Green’s function has
been applied to ultrasound [16-18], to crustal seismology
[19-23], to exploration seismology [24-26], to helioseismol-
ogy [27-29], to structural engineering [30-32], to ocean
acoustics [33,14,34], to earthquake data recorded in a bore-
hole [35], and to monitoring of volcanoes and fault zones
[36,37].

Wapenaar et al. [38] derived the extraction of the Green’s
function for systems of coupled first-order differential equa-
tions that describe general linear systems that include acous-
tic and elastic waves, the Maxwell’s equations, and diffusive
systems. The general applicability of the extraction of the
Green’s function is reminiscent to the fluctuation-dissipation
theorem, e.g., Refs. [39-41], which states that the response
of a linear system in thermodynamic equilibrium to an exter-
nal force is related to the fluctuations in the system. The
application of the fluctuation dissipation theorem to macro-
scopic systems such as the Earth’s crust or ocean is, how-
ever, not trivial. The energy of macroscopic systems is large
compared to the thermal energy; hence these systems are, in
general, not in thermodynamic equilibrium. The extraction of
the Green’s function for acoustic and electromagnetic waves
was derived earlier for stationary random media [42-44].
These treatments rely on an ensemble average, and therefore
give the Green’s function of the mean field only. In this work
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we average neither over thermal fluctuations, nor over an
ensemble, but use an averaging over sources instead.

In this work we explore the general formulation of the
extraction of the Green’s function for linear scalar systems
and explore the requirements that such a system must satisfy
in order to retrieve the Green’s function from fluctuations.
Section II illustrates the central role of the concept of equi-
partitioning in the extraction of the Green’s function. We
introduce linear systems with symmetric spatial differential
operators in Sec. III, and derive in Sec. IV a general theory
for the extraction of the Green’s function from fluctuations
for such systems. Several examples are shown that are either
of a didactic nature, or because they provide new applica-
tions. This general formalism is applied to systems that are
invariant under time reversal (Sec. V), to the diffusion equa-
tion (Sec. VI), to a string with either an open end or fixed
ends (Secs. VII and VIII), to acoustic waves (Sec. X), to
Schrodinger’s equation (Sec. XI), and to a vibrating beam
(Sec. XII). We extend the general theory to antisymmetric
differential operators in Sec. XIII, and apply this in Sec. XIV
to the one-dimensional advection equation. In Sec. IX we
show that the Green’s function cannot always be retrieved by
cross-correlation, and relate this to the lack of equipartition-
ing. We explain in Sec. XV why energy transport plays such
a central role in the retrieval of the Green’s functions from
ambient fluctuations. In the Appendix we show that the re-
quirement of equipartitioning is stronger than the condition
that the net energy current vanishes.

II. A HEURISTIC EXPLANATION OF THE ROLE
OF EQUIPARTITIONING

The concept of equipartitioning plays a central role in the
retrieval of the Green’s function. The word equipartitioning
is often used to mean that all modes [2,45], or degrees of
freedom [46], of the system are excited with equal energy. It
has also been used to indicate that the energy current is equal
in all directions [18]. We use the latter definition of equipar-
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FIG. 1. Left panel: a point source in a homogeneous acoustic
medium at point A that emits equal amounts of energy toward
points B and C. Right panel: equal energy transport along the solid
and dashed arrows is needed to retrieve the Green’s function for the
propagation from the source point A to the points B and C.

titioning. Figure 1 serves to heuristically illustrate the central
role of equipartitioning. In this example we consider acoustic
waves in a homogeneous medium. A pressure source at lo-
cation A excites acoustic waves. As shown in the left panel,
these waves propagate with equal amplitude to receivers at
points B and C.

Next, we consider the retrieval of the Green’s function
from cross-correlation. In the right panel of Fig. 1 there is no
physical source at point A, and incoming waves turn into
outgoing waves from point A as they pass through that loca-
tion. Because of the absence of a physical source in the right
panel of Fig. 1, the term virtual source has been used
[24,25]. Since the outgoing waves for the physical source in
the left panel have the same amplitude for all propagation
directions, the same must be true for the virtual source in the
right panel. The outgoing wave at point A in the right panel
has the same energy as the incoming wave, because the
waves simply move through point A. The equivalence of the
real source in the left panel, and the virtual source in the
right panel, implies that the incoming waves in the right
panel must have the same energy for all propagation direc-
tions. In other words: the waves must be equipartitioned. For
the sake of argument we used a homogeneous acoustic me-
dium. This is, however, not essential. A scalar source in an
inhomogeneous medium also radiates waves isotropically
[47].

As another case consider the situation that point B is a
diffractor. The direct wave that travels from A to C should be
excited by the virtual source with the same strength as that of
the diffracted wave that travels from A through the diffractor
B to point C. In order to retrieve the correct amplitude ratio
of the direct and diffracted waves from cross-correlation, the
energy currents along the solid and dashed arrows in the
right panel of Fig. 1 must be identical.

For vector equations, such as for elastic waves, the energy
is usually not radiated isotropically. For example, a point
force in an elastic medium radiates energy with a dipole
pattern [48]. For such a vector problem, one retrieves the
Green’s function by cross-correlating the displacement fields
recorded at two receivers [5]. The projection of the displace-
ment field onto the component used for the cross-correlation,
gives the same dependence on the direction of propagation as
does the radiation pattern of a point force. Therefore, one
also needs the energy current to be independent of direction
for such a vector problem.
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In general, the extraction of the Green’s function by cross-
correlation gives the superposition of the causal Green’s
function and its time-reversed version (usually called the
acausal Green’s function.) In observational studies the causal
Green’s function as estimated by cross-correlation, and its
acausal counterpart, often have different amplitudes. This
asymmetry has been linked to the lack of equipartitioning
(e.g., Refs. [18,49]). We give a more quantitative discussion
of equipartitioning in Sec. XV.

The requirement that the energy current is independent of
direction implies that the net energy current vanishes. The
net energy current vanishes when the energy current for ev-
ery pair of opposing directions vanishes, but the energy cur-
rent can still vary with direction. We show in the Appendix
explicitly that a vanishing net energy current does not nec-
essarily imply equipartitioning.

III. A GENERAL DYNAMIC SYSTEM
WITH A SYMMETRIC OPERATOR

Consider a scalar field u that is governed by the equation

(aN(r,t)*% + o +ay(r,n)* % +a,(r,t) * %)u(r,t)
=H(r,t) * u(r,1) + q(r,1). (1)

In this expression the asterisk denotes temporal convolution,
q(r,1) is the forcing, and H is a symmetric operator with
properties that are defined in Eq. (3). Later we provide ex-
amples of physical systems that are described by Eq. (1). For
Schrodinger’s equation, the wave function is complex in the
time domain, hence u(r,?), and the time-domain Green’s
function, may be complex. In this work we analyze this sys-
tem in the frequency domain, using the Fourier convention,
h(t)=fh(w)exp(—iwt)dw. With this convention, expression
(1) corresponds, in the frequency domain, to

N
2 a,(r,0)(— iw)"u(r,w) = H(r,o)u(r,o) + g(r,0). (2)

n=1

Henceforth we suppress the frequency dependence of these
quantities. The operator H(r,w) and the coefficients a,(r, )
are not necessarily real.

Symmetry of H means that for any two functions f and g

f(Hg)dV = f (Hf)gdV, (3)

Vlol Vlot

where the integration is over the total volume V,; over which
the system is defined. For example, in seismology the total
volume could be the solid earth, which is bounded by a
stress-free surface. Because of property (3), the system sat-
isfies reciprocity. To show this we derive a representation
theorem of the convolution type by considering expression
(2) for two states that we label with the subscripts A and B,
by evaluating (2),ug—u4(2)g. In this notation (2), denotes
expression (2) for state A. This subtraction gives
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FIG. 2. Definition of the total volume V,, (bounded by the solid
line), and the subvolume V defined by the shaded region.

up(Hug) — (Hup)up — qauip + qpuy =0. (4)

Integrating this equation over the total volume V,, and using
Eq. (3) gives

J QAMBdV=f qpuadV. (5)
v, v,

tot tot

Consider an impulsive forcing at location r, for state A and
at location rp for state B:

QA,B(r) =6(r— rA,B)~ (6)

The response to such a forcing is, by definition, the Green’s
function

s p(r) = G(r,rp ). (7)
Inserting these expressions into Eq. (5) gives
G(rA’rB) = G(rB’rA) s (8)

which states that reciprocity is satisfied.

As stated in expression (3), the operator is symmetric
when integrated over the total volume V. In this work we
limit the integration in several examples to a subvolume V of
the total volume V,, see Fig. 2. For example, in seismology
the subvolume may be the region that is investigated in a
seismic survey. Its boundary JV is not necessarily a physical
boundary where homogeneous boundary conditions apply.
For integration over this sub-volume the operator H is not
necessarily symmetric, and we define the bilinear form

L(f,g) by
J [f(Hg)—(Hf)g]dvfé; L(f,g)dS. )
\%4 A%

Examples of the bilinear form L are shown in later sections.
From definition (9), L is antisymmetric:

L(f.8) == L(g.]). (10)

Integrating expression (4) over the volume V, and using defi-
nition (9), gives

3g L(uA,uB)dS+f (gptg — qaup)dV=0. (11)
v 1%

Consider a state B that is excited by an impulsive excitation
at location r, i.e., g(r)=8(r—ry); hence ug is given by the
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Green’s function ug(r)=G(r,r,). Dropping the subscript A,
expression (11) is then given by

3€ L[u(r),G(r,rO)]dS—f G(r,r)g(r)dV + u(ry) = 0.
av %
(12)

Using reciprocity, expression (8), this gives the representa-
tion theorem that relates the field to the excitation and its
values on the boundary

u(ro)=f G(ro,r)q(r)dV—§ Llu(r),G(ry,r)]dS.
v p]

14

(13)

IV. GENERAL EXPRESSION FOR THE EXTRACTION OF
THE GREEN’S FUNCTION

In this section we derive a general expression for the ex-
traction of the Green’s function using a representation theo-
rem of the correlation type. Following Fokkema and van den
Berg [50,51] we evaluate (2)Au2—u2(2)3, where (2); de-
notes, for example, the complex conjugate of expression (2)
for state B. Integrating the result over the volume V gives

N
S T- iw)'a, - (iw)”aZ]uAuZdV

n=1JV

:f [uZ(HuA)—(H*u;)uA]dV+f (unZ—qZuA)dV.
v v
(14)

For even values of n, a,l(—iw)”—a:;(iw)":Zi Im(a,)(iw)",
while for odd values of n, an(—iw)”—aZ(iw)"=—2Re(an)
X (iw)". Writing H'=H+(H —~H)=H-2i Im(H), and using
definition (9) gives

2> (iw)" Re(a,,)uAuZdV
nodd YV

+2i > f (iw)" Im(an)uAuZdV
%

n even

=2i j iy Im(H)u;dV+jg L(uy,uy)dS
v A%

+ f (qauy — qgia)dV. (15)
\%4

The general expression for the extraction of the Green’s
function follows by choosing expression (6) for the excita-
tions g, 5. According to expression (7), the fields u, 5 are
then given by the Green functions. Using reciprocity [Eq.
(8)], we can write the result as
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G(ryrp) — G(ryrg) =2 >, (iw)”f Re[a,(r)]G(r,,r)G (rp.r)dV -2i >, (iw)"f Im[a,(r)]G(r,,r)G (rp,r)dV
%

n odd n even \%
+ 35 L[G (rg,r),G(ry,r)]dS + 2i j G(r,,r)Im(H)G" (rg,r)dV. (16)
% \%

In the following sections we give examples of how this expression can be used to extract the Green’s function from the
correlation of fields. The left-hand side is the difference of the Green’s function and its complex conjugate. Since complex
conjugation in the frequency domain corresponds in the time domain to time-reversal, the left-hand side corresponds in the
time domain to G(r,,rp,t)—G (r,,rg,—t), the difference of the causal Green’s function and the complex conjugate of the
acausal Green’s function. In many applications, such as acoustics or diffusion, the field is real in the time domain. In quantum
mechanics, the wave function, and the associated time domain Green’s function, is complex. For this reason we retain the
complex conjugation of the time domain acausal Green’s function.

The minus sign in the left-hand side of Eq. (16) is a matter of convention only. Multiplying expression (16) with —iw, and

defining

GV =—iwG, (17)

gives

G(ryrp) + GV (rprp) =2 2 (i)™ f Re[a,(r) ]G (r,r) G (rg,r)dV - 2i
\%4

n odd

> (iw)"! f Im([a,(r)]GY(r,,r)

n even Vv

. 1 2 .
X G (rp,r)dV + ~_3€ LGV (rp,r),GY(r,,r)]dS + = f GY(r,v)Im(H)GY (rg,r)dV.
iw ) 5y wJy

This equation is equivalent to expression (16), but has a plus
sign on the left-hand side, as in several other derivations,
e.g., Refs. [52,12,6]. When G denotes, for example, the dis-
placement Green’s function, G corresponds to the Green’s
function for the velocity. The sign in the left-hand side of
expressions (16) and (18) is thus defined by the choice of the
Green’s function that one uses. Note that the right-hand sides
of these equations differ by a factor 1/iw. Since, with the
employed Fourier convention, —iw corresponds, to differen-
tiation in the time domain, expressions (16) and (18) differ,
in the time domain, by an additional time derivative.

V. EXAMPLE: INVARIANT SYSTEMS UNDER
TIMEREVERSAL

Consider systems that are invariant under time reversal.
This invariance has explicitly been used in some derivations
for extraction of the Green’s function [10,11]. An example of
systems that are invariant under time reversal is, for ex-
ample, the acoustic wave equation without attenuation:

R
pc2 or*

V~<1Vu)=q, (19)
p

with p the mass density and ¢ the speed of sound. In the
notation of expression (1), a,=1/pc?, and H=V-p~'V. For

(18)

this problem only a, is nonzero, and both a, and H are real.
Another example is Schrodinger’s equation [53]

oy h?
h— =— —V2+ Vi, 20
! ot 2m v+ vy (20)

which is invariant under time reversal and complex conjuga-
tion. Since the complex conjugation does not change expec-
tation values [53], the complex conjugate wave function cor-
responds to the same physical state. In this case only a; is
nonzero, H is real, and a,;=i# is purely imaginary.

For these examples the first two terms in the right-hand
side of expression (16) vanish. Since time-reversal corre-
sponds, in the frequency domain, to complex conjugation,
time reversal invariance of Eq. (2) implies that a,(—iw)" is
real. For even n this means that a,, is real, while for odd n, a,
is imaginary. Under these conditions the first two terms in
the right-hand side of Eq. (16) are equal to zero, while the
condition that H is real implies that the last term vanishes as
well. In this case, expression (16) reduces to

G(ry,rg) — G (ry,rp) = 3€ L[G"(rp,r),G(r,,r)]dS.
v
(21)

This expression contains a surface integral, but no volume
integral. In later sections we show that this allows for the
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extraction of the Green’s function by cross-correlation of
fields that are excited by sources on the surface dV only. The
general expression (16) contains both a surface integral and
volume integrals. The presence of volume integrals indicates
that for systems that are not invariant under time reversal,
one needs sources throughout the volume to extract the
Green’s function. We analyze the acoustic wave equation and
Schrodinger’s equation in more detail in Secs. X and XI.

VI. EXAMPLE: THE DIFFUSION EQUATION

The general expression (16) is also valid for systems that
are not invariant under time reversal. As an example of such
a system consider the diffusion equation

ou(r,t)

P V- [D(r) Vu(r,n)]+q(r.1), (22)

where the diffusion constant D(r) can vary with location. In
the notation of expression (1), a;=1, and a,=0 for n# 1. The
operator H is real and is defined by

H=V-DV. (23)

In this section we show how the Green’s function of the
diffusion equation can be extracted from the correlation of
fields excited by random sources. This derivation is equiva-
lent to an earlier derivation [54].

For operator H of expression (23), fHg=fV-(DVg)
=V-(DfVg)-DV -fV g. Integrating this over the volume V,
applying Gauss’s theorem, and subtracting the same expres-
sion with f and g interchanged, gives Green’s theorem

f[ng—(Hf)g]dV=3g D(fg—g—j—fg)d& (24)
1% v n n

where d/dn denotes the derivative normal to the boundary
dV. The bilinear form L for this problem is thus given by

17 d
L(f.g) =D<f(9—i - ég)

(25)
Consider the special case, where on the boundary, either the
field, its normal derivative, or a superposition of these quan-
tities vanishes. This means that f satisfies one of the follow-
ing boundary conditions:
J
f=0 or (9—f =0

J,
or ¥ +af=0, (26)
n on

with « a real number. The same boundary condition holds for
g. In this case
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FIG. 3. A string with an open, forced, end at x=0 and a fixed
end at x=a.

L(f,g)=0, (27)

and expression (16), for the diffusion equation, is given by

G(ry,rp) - G*(rA,rB) = 2ia)f G(I'A,F)G*(I'B,r)dV
v

(28)

Also, using expression (27), representation theorem (13) re-
duces to

u(ro) = f G(ro.r)g(r)dVv. (29)
14

Suppose that the field is excited by spatially uncorrelated
sources that have a power spectrum |S(w)|*:

(a(r)q (1)) =|S(w)8(r, - 1,). (30)

The brackets (- --) denote an average of all sources. Expres-
sion (30) states that the excitation at two different spatial
locations is uncorrelated when averaged over all sources.
This happens for quasirandom continuous sources whose
source signature is uncorrelated for sources at different loca-
tions. Equation (30) is also applicable when controlled, im-
pulsive, sources fire sequentially at different locations, and
when a summation over these sources is applied (e.g., Refs.
[24,25]). In practical applications the source average for
continuous sources is implemented by averaging over
multiple nonoverlapping time windows, e.g., Refs. [20,36].
Multiplying expression (28) with |S(w)|?, and using that

f G(r,,r)G (rg,r)dV
v

=f f G(ry,r)dr, _rZ)G*(rB’rZ)dVldV2
vJy

gives

[G(rA,rB)—G*(rA,rB)]|S(w)|2=2iwf f G(ry,r)|S(w)|?8(r; = 1,)G (rp,1r,)dV,dV,
vJv

:2iw<f G(rA9r1)Q(rl)dV1|:f G(I‘B,l'z)CI(l'z)dvzl >=2iw<M(I‘A)M*(r3)>, (31)
v v

036103-5



SNIEDER, WAPENAAR, AND WEGLER

where expression (29) is used in the last identity. This result
can be written as

. 2iw .
Glryxp) - G (ryrp) = |S(’T)|2<u<rA)u rp). (32)

The difference of the causal and acausal Green’s function
thus follows from the cross-correlation of fields excited by
spatially uncorrelated sources. The factor iw corresponds, in
the time domain, to a (negative) time derivative —d/dr. A
stronger excitation leads to stronger field, but the Green’s
functions in the left-hand side must be independent of the
strength of the excitation of the fields that are correlated. The
division by the power spectrum in the right hand side of
expression (32) provides the required normalization.

The reason why volume sources are needed for the extrac-
tion of the Green’s function can be explained as follows. The
diffusion equation is of a dissipative nature. A continuous
injection of energy within a volume is needed to overcome
the dissipation inherent with diffusive systems. In this way
an energy balance is established, and the system is equipar-
titioned when averaged over all sources.

VII. EXAMPLE: A STRING WITH MOVING END

In order to clarify the essential role of an energy balance
for retrieving the Green’s function, we first present a simple
one-dimensional system. Consider a string extending from
x=0 to x=a with mass-density p(x) per unit length, and is
under constant tension 7, see Fig. 3. The left end of the string
is excited at x=0, while the right end is fixed at x=a. There
is no dissipation in the string. The motion of the string is
governed by

FuFu
— —T— =q(x,1). 33
p) 5 ~ T3 =q(x.1) (33)
The string has a fixed end at x=a and is being shaken by a
force F(r) at x=0

q(x,t) = F(t) 8(x). (34)

In the notation of expression (1), a,(x)=p(x), all other a,, are
equal to zero, and H=T4?/dx*. Using definition (9)

Inserting these results into expression (16) gives
G(x4,xp) — G (xp,xp) = T[G (x5,X)9,G(x4,%)
- G(x4,0)0,G (xp.0) 15 (36)

[For one-dimensional systems the surface integral in expres-
sion (16) reduces to the difference of the integrand at the
ends of the integration interval.] The contribution from the
point x=a on the right-hand side vanishes because the string
is fixed at this point. In order to use this expression for the
extraction of the Green’s function, we need to eliminate the
derivative of the Green’s function at the left endpoint (x
=0) from this expression. This can be achieved by imposing
a radiation boundary condition at the left side of the string.
Together with the condition that the right side is fixed, this
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FIG. 4. A string that is fixed at both endpoints that is forced
internally.

means that u(x) and G(x,x,) satisfy the following boundary
conditions

afx=0) _

=—ikf(x=0) and f(x=a)=0, (37)
ox

with the local wave number k at the left side of the string
given by

w

k:c(x=0)’

(38)

where c=y”Fp. Note that for radiation boundary condition
(37) the parameter « in expression (26) is imaginary. Insert-
ing these results in expression (36) then gives
G(x4,xp) — G (x4,xp) = 2iTkG(x,4,x = 0)G " (x5,x = 0).
(39)

Using boundary condition (37) the motion of string is
according to expression (13) given by

u(xy) = G(xp,x =0)F(w). (40)

Multiplying Eq. (39) with |F(w)
then gives

2, and using expression (40),

[G(xp,xp) = G (x4,xp) ]| F(@)|? = 2iTkG (x4,x = 0) F(w)
X[G(xp,x=0)F(w)]"
=2iTku(x,)u (xz).  (41)

Using expression (38), this result can also be written as

2ioNp(x=0)T

Olnts) = G o) ==

u(x)u’ (xp).

(42)

In expression (41), the cross-correlation is multiplied with
Tk. The power in a vibrating string is proportional to Tk|u|*
[55]. This means that the reconstructed Green’s function de-
pends on the power that is injected into the string by the
shaking at its end point.

We used the radiation boundary condition (37) to elimi-
nate the x derivative of the Green’s function. The physical
reason for this choice is that the radiation boundary condition
corresponds to an energy sink by outward radiation at the
same point where energy is supplied to the system (the left
side of the string that is shaken). This creates a state of
equipartitioning in the string.
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VIII. EXAMPLE: A STRING WITH FIXED ENDPOINTS
AND DISSIPATION

In the previous example the string was not damped, and
the radiation from the left end provided an energy sink. In
this section we show a damped string with fixed endpoints,
where the damping acts as an energy sink (see Fig. 4). The
damped string with fixed endpoints satisfies

P K
p(x)(?—;‘ + a1<x)§ — TS =q(x.0), (43)

ox?
where a,(x) is the damping parameter. Because of the fixed
endpoints
u(x=0)=u(x=a)=0. (44)

According to expression (35), for these boundary conditions
the bilinear boundary term vanishes

L(f,g)=0, (45)

and expression (16) is given by
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a

G(xa,xp) — G (x4,xp) = 2iwf a;(x)G(x,,x)G (xg,x)dx.
0

(46)
For a given loading, the response according to Eq. (13) is

given by

M(x0)=f G(xp,x)q(x)dx. (47)
0

Next consider a spatially uncorrelated excitation that sat-
isfies

<q(x1)q*(x2)>=a1(x1)|S(w)|25(x1 -X). (48)

Note that this source strength locally is proportional to the
attenuation, as described by the damping parameter a,(x).
Multiplying expression (46) with the power spectrum gives

[G(xp,xp) — G*(XA’XB)]|S(Q))|2 = 2iwf f G(XAsxl)|S(w)|zal(x1)5(x1 - xz)G*(stxz)dxldxz
0o Jo

=2iw fG(xA’M)fI(xl)Xm(f G(XB,Xz)L]()CQ)dX2> =2ia(u(xy)u’ (xp)); (49)

0

hence the difference of the causal and acausal Green’s func-
tions follows from cross-correlation of the fields excited by
spatially uncorrelated sources.

Note the presence of the damping a,;(x) in expression
(48). The Green’s function can be extracted from the cross-
correlation only when the excitation is locally proportional to
the damping. This creates an energy balance because the
source of energy by the excitation is locally compensated by
the attenuation, which acts as an energy sink. In Sec. XV we
use the equation of radiative transfer to show that in a state
of equipartitioning the excitation locally balances the dissi-
pation due to intrinsic attenuation. When the excitation
would not be proportional to the damping, there would be a
net energy flux from the regions with strong excitation and
weak damping to the areas of weak excitation and strong
damping. The associated net energy flux violates the require-
ment of equipartitioning.

IX. EXAMPLE: FAILURE TO EXTRACT THE GREEN’S
FUNCTION

In this work numerous examples are presented of the ex-
traction of the Green’s function by cross-correlation. We now
use the string, as presented in Secs. VII and VIII, to illustrate
situations where the Green’s function cannot be extracted by
cross-correlation. First consider the string with internal exci-

0

tation, as analyzed in Sec. VIII, but now without dissipation.
This corresponds to the case a;=0. Inserting this value in the
right-hand side of expression (46) gives G(x,,xp)
—G"(x4,x5)=0, which implies that the Green’s function can-
not be retrieved by cross-correlation.

The physical reason for the inability to extract the Green’s
function in this case is that energy is continuously supplied
by the excitation, but there is no dissipation to act as a sink
for this energy. The string thus is not in equilibrium, violat-
ing equipartitioning. Consequently, the Green’s function can-
not be retrieved from the fluctuations. In this case attenuation
is needed to break the invariance for time-reversal in order to
retrieve the Green’s function.

As a second example consider the string that is excited at
one of its endpoints, and whose motion is dissipative as de-
scribed by a nonzero value for a;(x). Following expression
(16), and modifying Eq. (39) to include the attenuation gives

G(xp,xp) = G*(anxB) =2iTkG(xp,x = O)G*(XB»X =0)
+ Ziwf a,(x)G(x4,x)G" (xp,x)dx.
0

(50)

Extending the steps leading to expression (41) then gives
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[G(xy,xp) = G*(XA’XB)]lF(w)F
= 2iTku(x,)u” (xg)

a

+2iw|F(w)|2f a,(x)G(x4,x)G (xg,x)dx. (51)
0

The last term prevents the Green’s function from being re-
trieved by cross-correlation. Again, this is caused by a non-
equilibrium state of this string. The string is being supplied
with energy on its left endpoint while energy is being dissi-
pated throughout the string. There is thus a net energy flux
from the endpoint into the string. This net energy flux vio-
lates equipartitioning.

If in addition to the force at the endpoint, there also is a
continuous excitation within the string, then the Green’s
function can be retrieved by cross-correlation. This can be
achieved, however, only when the internal excitation com-
pensates for the dissipation. Experimentally this may be dif-
ficult to realize.

X. EXAMPLE: THE ACOUSTIC WAVE EQUATION

The previous examples are for one-dimensional systems.
The same principles hold for more dimensions. We show this
by analyzing the acoustic wave equation (19) in more detail.
This derivation is equivalent to earlier treatments [6,7]. A
comparison with expression (23) shows that H=V.p~'V is
the same operator as that for the diffusion equation when D
is replaced by p~'. Making this substitution in Eq. (25) and
inserting these results in Eq. (16) gives

aC;(rA9 r)

G(ry,rp) =G (ry,rp) = % _<G (rp,r)
av P on

(9G*(r3’ r)

P G(rA,r)>dS. (52)

Note that in contrast to Eq. (28) for the diffusion equation,
this expression contains a surface integral rather than a vol-
ume integral. Following Ref. [6] we use a spherical surface
far away from the points r, and rp and impose a radiation
boundary condition

9T _ o Giror). (53)
on

Using the relation k=w/c, expression (52) is then given by

G(ry,rp) - G*(I'A,I'B) = 2iw§

1 *
—G(ry,r)G (rg,r)ds.
av PC

(54)
For spatially uncorrelated sources at the boundary that sat-
isfy
|S(w)|?

(q(ry)g (ry)) = p(r)c(ry)

or;—ry), (55)

expression (54) reduces to
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Gltars) = G (04t) = ol (). (56)

[S(w)]
In this case, energy is supplied to the system at the boundary
by the sources, and the energy loss due to the radiation
boundary condition establishes the equilibrium condition re-
quired for equipartitioning.

The presence of the factors 1/pc in expression (55) can be
explained as follows. The power in an acoustic medium is
proportional to pv, with v the particle velocity. The ratio of
the pressure to the velocity is given by the acoustic imped-
ance [56], p/v=pc; hence the power is proportional to
p?*/ pc. The excitation of expression (55) thus dictates that the
power supplied at all points on the surface is constant, this
establishes equipartitioning.

According to expression (56) the Green’s function can
indeed be extracted by cross-correlation. A similar problem
has been formulated for acoustic waves that are attenuated
[57], as described by a complex-valued compressibility &
=1/pc?. In this case Im(H) #0, and, as a result, an additional
volume integral is present in the right-hand side of expres-
sion (52). In that case the Green’s function can be recovered
when the volume is chosen in such a way that either the
surface integral vanishes (i.e., a free surface) and volume
sources are present, or the volume sources and the surface
sources are in the right proportion as in the case of the string
in Sec. IX.

XI. EXAMPLE: SCHRODINGER’S EQUATION

The extraction of the Green’s function can also be carried
out for quantum systems. The extraction of the Green’s func-
tion for Schrodinger’s equation is almost the same as that for
acoustic waves. (In quantum mechanics, the term “propaga-
tor” is often used for the Green’s function [53].) For
Schrédinger’s equation (20), H=—(£%/2m)V?+V. A compari-
son with the acoustic wave equation (19) shows that in ex-
pression (52), 1/p must be replaced by —#2/2m. Expression
(54) generalizes for Schrédinger’s equation to

. ikh? N
G(rp,rp) =G (rprp) =~ l é G(ry,r)G (rp,r)dS.
m-Jay

(57)

Suppose that the excitation on dV is spatially uncorrelated,
and is given by

(q(r))g"(ry) =[S(0)8(r; - ry). (58)

Taking the same steps as in the derivation of expression (56),
and denoting the field by ¢, the Green’s function for
Schrodinger’s equation can be retrieved by cross-correlation

. ikh? .
Grars) - G (Eary) = — mmw (rs). (59)

Extraction of the Green’s function for Schrodinger’s equa-
tion experimentally requires that the cross-correlation of the
wave function be measured experimentally and that waves
are excited at the bounding surface. The condition that

036103-8



UNIFIED GREEN’S FUNCTION RETRIEVAL BY CROSS-...

x=0 X=a

FIG. 5. A beam that is supported at both endpoints that is forced
internally.

sources are present on the surface can be relaxed by using
the derivation of Weaver and Lobkis [7], which shows for
acoustic waves in a medium that is homogeneous outside the
surface dV, that the sources on the surface can be replaced by
distributed volume sources outside the surface. In the fre-
quency domain, the acoustic wave equation for a homoge-
neous medium and Schrodinger’s equation for a free particle
both reduce to the Helmholtz equation. The arguments of
Weaver and Lobkis therefore also are applicable for
Schrodinger’s equation when the potential vanishes outside
the surface dV. The continuous source distribution is more
realistic than sources on the surface for quantum-mechanical
scattering problems.

The right-hand side of expression (59) contains the corre-
lation of the fields at locations r, and rgz. This quantity can
be measured when these points coincide r =rz=r. In that
case

* 2
Gler) -G (r.r) = mdwm (60)

The right-hand side is the expectation value of the intensity
fluctuations as a function of frequency. The left-hand side is
the sum of the causal and acausal Green’s function for waves
to return to their starting point. This quantity contains phase
information that is related to the time needed for a wave to
return to the point r after it has left this point. The counter-
part of expression (60) for elastic waves has been applied to
recorded fluctuations in the displacement to determine the
elastic waves that travel from a receiver into the subsurface
of the Earth and then return to the receiver [36,37].

XII. EXAMPLE: A VIBRATING BEAM

In the previous examples, the operator H was a second-
order differential operator. This operator, however, need not
be of second order. As an example, consider an unclamped
beam that is supported at its end points x=0 and x=a; see
Fig. 5. The beam satisfies a differential equation that is of
fourth order in the space variable [58]

Fu o &P Pu
m(x) +a1(x)E+y<D(x) ) =q. (61)

a a2

In this expression m(x) is the mass of the beam per unit
length, and D(x) denotes the flexural rigidity. In the notation
of expression (1), a,(x)=m(x), and H=-4,,(Dd,,). Since the
endpoints of the beam are fixed and unclamped, the beam
satisfies the following boundary conditions:
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7\*-—_
x=0 xX=a

FIG. 6. Advective transport in a single direction.

u(x=0)=u(x=a)=0 and d,,u(x=0)=d u(x=a)=0.
(62)

Using repeated integration by parts, the operator L defined
in expression (9) is given by

L(f’g) = D(fxgxx _fXXgX) + g&/\(DfXX) _f())((DgXX) (63)

Because of boundary conditions (62), [L(f,g)]\Z5=0. In this
case, expression (16) is given by

a

G(xa,xp) — G (x4,x5) = 2in a;(x)G(x,,x)G (xg,x)dx.
0

(64)

This expression is identical to Eq. (46) for the string with
internal loading and attenuation. This means that for the
beam the Green’s function can be determined from the mo-
tion excited by the spatially uncorrelated source defined in
Eq. (48) using the cross-correlation of expression (49). This
example is of practical importance because the beam is a
model for mechanical structures such as bridges.

XIII. SYSTEMS DEFINED BY AN ANTISYMMETRIC
OPERATOR

The theory of the preceding sections is based on an op-
erator H that is symmetric when considered over the volume
Vio- Some systems are defined by an operator that is anti-
symmetric. This happens when H contains an odd order of
spatial derivatives, as in the flow problem presented in the
next section. For such an operator

f(Hg)dV =~

Vtol Vl()t

(Hf)gdVv. (65)

Reciprocity does not hold in this case because the symmetry
property of H is essential in the derivation of expression (8).
Equation (65) is not necessarily satisfied when the integra-
tion is carried out over a subvolume V. By analogy with
expression (9) we define a bilinear form M by

ijWﬂmﬂWEﬁﬂW@ﬁ. (66)
\4 v

A representation theorem of the correlation type follows
by considering two states labeled with the subscripts A and
B, and by integrating the combination (2)Au;+uA(2); over
the volume V to give
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N

n=1JV

PHYSICAL REVIEW E 75, 036103 (2007)

> [ iw)a, + (iw)”a:]uAu;dV= J [u;(HuA) + (H*uZ)uA]dV+ f (un; + q;uA)dV. (67)
v v

Applying steps similar to those for the derivation of expression (16) gives

G(rgry) + G(ryrg) =2 >, (iw)”f Re[a,(r)]G(r,r, )G (r,rp)dV — 2i > (iw)”f Im[a,(r)]G(r,r, )G (r,rp)dV
v

n even \4

n odd

—§ Mmmwyﬁﬁmﬂﬁ+ﬂfGmmmmMG%wgﬂﬁ (68)
v \%4

Note that now for real a, only the even order coefficients
contribute. Also, because of the lack of reciprocity, the argu-
ments of the Green’s function differ from those in the corre-
sponding expression (16) for the case of a symmetric opera-
tor.

XIV. EXAMPLE: THE ADVECTION EQUATION

As a simple one-dimensional example of the extraction of
the Green’s function for a system that is described by an
antisymmetric operator H, we study one-dimensional advec-
tion of a fluid. In this case the governing equation is

+—=q, (69)

with the field u advected by the flow. This field could denote,
for example, the temperature for advective heat transport or
the concentration of a nonreactive contaminant. Consider the
case in which the field is determined by its value at a point
upstream, rather than by an explicit source term; hence g
=0 in expression (69). As shown in Fig. 6, flow is between
two endpoints x=0 and x=a, first with flow towards the
right, as shown by the solid arrow. Because of the varying
width of the channel, as in a venturi, the flow velocity may
depend on the x coordinate. For this system a;(x)=1/¢(x), all
other a, are equal to zero, and H=-4/dx. Using integration
by parts, the bilinear form M defined in Eq. (66) is given by

M(f,g) =~ fg. (70)

We denote the Green’s function which depends on the veloc-
ity ¢, by G. For this special case the general expression
(68) reduces to
G (xp,x4) + G (x4,x5) =[G (x,,0) G (x,x5) =4
(71)
Since H is antisymmetric, reciprocity does not hold. For
this type of flow problem, the flow-reversal theorem [59-61]

states that the arguments of the Green’s function can be re-
versed when the flow is reversed as well:

G(C)(xl,xz) =- G(_C)(xz,xl). (72)

Applying this to expression (71) gives

G x4,x5) + G (xp,x4) = =[G (24,%) G (x5, 0) 1556
(73)

Note that the velocity c is replaced everywhere by —c. Since
the sign of the velocity is not important, we drop the super-
script —c, and consider a flow towards the left as shown by
the dashed arrow in Fig. 6. For the advection equation a
source has an influence downstream only; hence the Green’s
function for a leftward moving flow satisfies

G(x,xp) =0 for x > x,. (74)

Consider two points between the endpoints of the flow
(0<x4 3<a). Because of condition (74), the contribution of
endpoint x=0 to expression (73) vanishes

G(xgxp) + G (xp.x4) = — Gx,x = a)G (xg.x=a).
(75)

Let u at the right endpoint have power spectrum |S(w)|%.
Multiplying expression (75) with this power spectrum, and
taking the same steps as those leading to expression (41)
gives

* - 1 *
G(xp,xp) + G (xp,x,) = WM(XA)M (xp). (76)

This shows that the sum of the causal and acausal Green’s
functions can be found by correlating the field recorded at
two locations that are generated by a source upstream.

For this problem, the sum of the causal and acausal
Green’s functions can be reformulated. Consider first the
situation where xp is upstream from x,; hence xz>x,. Be-
cause of condition (74), the second term in the left hand side
of expression (76) vanishes, so that

-1 .
G(xp,xp) = WM(XA)M (xp) (xp>2x,). (77)

When xg is downstream from x4, the first term of expression
(76) vanishes by virtue of condition (74), and

G (xp.xy) = uxp)u (xp) (xp < xy). (78)

__1
|S(w)|?

Taking the complex conjugate changes this result into
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G(xp,x4) = ulxgu’(xy) (xp < xy). (79)

__1
|S(w)|?

Expressions (77) and (79) can be combined into the general
expression

- *
G(xdownstreamsxupstream) = | S( w) |2 u (xdownstream) u (xupstream) H

(80)

where Xgownsiream denotes the downstream point and X,pgream
the upstream. This means that for the advection equation, the
Green’s function can be retrieved by cross-correlating the
fields generated by a source upstream from both observation
points. The extraction of the Green’s function for acoustic
waves in a medium with flow is described in Refs. [38,62,63]

XV. RECONSTRUCTING THE GREEN’S FUNCTION
AND EQUIPARTITIONING

As shown in the examples, an energy balance is necessary
for extracting the Green’s function by cross-correlation. This
confirms the heuristic arguments of Sec. II. In this section we
explore the requirement of equipartitioning. Let us first con-
sider why the energy current, rather than another current
such as the momentum current, plays such a central role in
the extraction of the Green’s function.

In the derivation of the general expression for extracting
the Green’s function in Sec. IV, a central step is to multiply
the field equation for state A with the complex conjugate of
field for state B, and to integrate the result over volume,
leading to expression (14). The field equation contains the
forcing g. The product of the forcing and the field gives the
power supplied by the excitation. This means that expression
(14), and subsequent expression, really are energy equations.
Fokkema, and van den Berg [50] use the phrase power reci-
procity for the representation theorems of the correlation
type.

For random media, a connection between the correlation
and the energy transport is made through the Wigner distri-
bution [64]. This distribution is the spatial Fourier transform
of the field-field correlation function. Ryzhik er al. [65] show
for acoustic waves, elastic waves, electromagnetic waves,
and matter waves, that in random media the Wigner distribu-
tion leads to the equation of radiative transfer, which governs
energy transport. Other derivations also used the Wigner dis-
tribution to show that for stationary random media, the
Green’s function of the mean field can be retrieved from the
field correlations [42—44]. Larose et al. [2] discuss the rela-
tion between the Wigner distribution and the extraction of
the Green’s function in more detail.

We have stressed the importance of equipartitioning as
defined by an energy current that is independent of direction.
The energy current J(r,z,n) satisfies the equation of radia-
tive transfer, which, in the time domain, is given by [66—68]
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FIG. 7. An example in which the direct wave can be retrieved
by cross correlation, but the diffracted wave cannot. Solid arrow:
the direct wave propagating from A to B. Dashed arrow: the dif-
fracted wave traveling from A through C to B. Dotted arrows: di-
rection of the incoming ambient waves used for the extraction of
the Green’s function.

oJ(r,t,n R . .
¥ +chi - VJ(r,1,0) + (i + pheca)J(r,2,10)

= f S(A,0)J(r,t,n)d*h + O(r,1,1). (81)

In this expression w;, and ., are damping coefficients due
to intrinsic attenuation and scattering losses, respectively.
S(h,f') accounts for the transfer of energy propagating in
the f’ direction to the n direction by scattering, and
QO(r,t,n) denotes energy sources.

In our derivation of the extraction of the Green’s function,
we use source averaging. Since the source average does not
depend on time, its time derivative vanishes. When the en-
ergy propagation is the same in all directions, the energy
current does not depend on the direction of propagation J
=J(r, ). Consider the source-averaged intensity, which is de-
fined as

I(r) = f J(r,0)d*h ) = 4w(J(r,1)). (82)

When J does not depend on the direction of propagation, the
second term of the left-hand side of expression (81) inte-
grates to zero; hence the average intensity satisfies in this
case

(Min+,uscm)1(r)=fS(ﬁ,ﬁ)dzﬁl(r)ﬂQ(r)), (83)

where (Q) is the source average of Q averaged over all di-
rections. The damping coefficient for scattering losses fol-
lows from the requirement that for lossless media (u;,=0) in
the absence of sources ((Q)=0), expression (83) reduces to

Mscat = J S(ﬁ,ﬁ)dzﬁ (84)

This expression relates the scattering attenuation to S(fi,f’).
This relation also holds in the presence of attenuation. Using
the previous expression in Eq. (83) gives
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Minl (r) =(Q(r)). (85)

This means that for the source average in a equipartitioned
state, the intrinsic attenuation is balanced by the energy
sources. This is precisely the requirement that is obtained in
Secs. VIII and XII for the damped string with fixed ends and
for the damped vibrating beam. This condition is also re-
quired for attenuating acoustic waves [57].

XVI. DISCUSSION

The theory presented here shows that for a general class
of scalar linear systems, the Green’s function can be ex-
tracted from field correlations. This makes it possible to ex-
tract the Green’s function for systems other than those for
acoustic or elastic waves. Of particular interest are
Schrodinger’s equation and the diffusion equation, because
the theory accounts for the extraction of the Green’s function
by cross-correlation in quantum mechanics, for the pore fluid
pressure in porous media, the diffusive transport of tracers
and contaminants, and for electromagnetic waves in attenu-
ating media. The example of the vibrating beam has applica-
tions in monitoring bridges, buildings, and other mechanical
structures.

The examples shown illustrate the importance of equipar-
titioning. This condition implies, in particular, that in sys-
tems that are not invariant under time-reversal, the sources of
the field must be distributed throughout the volume and have
a strength proportional to the local attenuation rate. Depend-
ing on the application, it might be difficult to realize such a
distribution of sources experimentally.

It is not clear what happens when the requirement of eq-
uipartitioning is not satisfied. Figure 1 helps understand what
happens in that case. Suppose the energy transport along the
solid arrow is larger than the energy transport along the
dashed arrow. The correlation of the field at the points A and
B is larger than the correlation of the fields at the points A
and C. The extracted Green’s function for the propagation
from A to B is therefore stronger than those from A to C. The
arrival time, or phase, of the Green’s function, however, is
not influenced by this mismatch in the energy flow. This
suggests that when the condition of equipartitioning is vio-
lated, the kinematic properties of the extracted Green’s func-
tion is correct, although the dynamic properties are not. Ex-
periments with ultrasound [18] and crustal surface waves
[49] support this conclusion. This conclusion is also sup-
ported by analytic models which show that for elastic waves
in a homogeneous medium, the amplitude of the P and S
waves in the extracted Green’s function is correct only when
the ratio of the P-wave energy to the S-wave energy equals
the value required by equipartitioning, but the phase of the
extracted P and S waves is correct for any value of this ratio
[8,9].

Two caveats should be made about the need for equipar-
titioning. First, note that in the advection example of Sec.
XIV there is no need to excite the field on the downstream
side. All transport is in the flow direction only; hence equi-
partitioning is unnecessary in that example. Second, the for-
malism for the extraction of the Green’s function given here
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gives the superposition of the causal and acausal Green’s
function. In some situations, such as a homogeneous me-
dium, one-sided energy transport is sufficient to give either
the causal or the acausal Green’s function. This is illustrated
in Fig. 7 showing incoherent waves are propagating towards
the left (dotted arrows). Here, the direct wave propagating
from A to B, as indicated by the solid arrow, can be retrieved
by cross-correlation, but the direct wave traveling in the op-
posite direction cannot. This does not mean, however, that
the full Green’s function for wave propagation from A to B
can be retrieved. Suppose a diffractor is present at point C.
The diffracted wave traveling from A through C to B, as
shown by the dashed arrows, cannot be extracted from the
waves coming in from the right. Cross correlation here gives
only part of the Green’s function (the direct wave).

The words equipartitioning and ensemble average have a
well-defined meaning in statistical mechanics that does not
necessarily carry over to the macroscopic systems considered
here. Note that we have not assumed thermodynamic equi-
librium, as used in derivations of the fluctuation-dissipation
theorem [39-41]. In thermodynamic equilibrium, a state with
energy E is weighted by exp(—BE) in the ensemble average,
where B8'=kT is the thermal energy. In this work, the fields
are characterized by a power spectrum |S(w)|* that can be
any function of frequency, as long as it is known. The fact
that thermodynamic equilibrium is not required is no surprise
because the field energy in the macroscopic systems consid-
ered here is usually much larger than the thermal energy.

This implies that source average in the context of this
paper does not refer to a thermodynamic average. This
means, in particular, that at any given moment in time, the
system need not be close to a state of equilibrium. Consider,
for example, a string that is excited at both endpoints. It does
not matter whether the two endpoints are simultaneously ex-
cited with an uncorrelated forcing, or one first shakes one
endpoint and then the other endpoint. In fact, in the virtual
source method [24,25] one excites elastic waves sequentially
by different sources, and extracts the Green’s function by
summing over all the sources. Averaging in the context of
this work implies an averaging over all sources that are used
for the extraction of the Green’s function, and equipartition-
ing is required after averaging over these sources.
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APPENDIX: AN EXAMPLE THAT A VANISHING NET
ENERGY CURRENT DOES NOT IMPLY
EQUIPARTITIONING

The net energy transport J™ is the energy current aver-
aged over all directions

Jret = %J(ﬁ)ﬁdzn, (A1)
where §(- - -)d’n denotes an integration over all directions. At
every point in space the energy current can be expanded in
spherical harmonics

036103-12



UNIFIED GREEN’S FUNCTION RETRIEVAL BY CROSS-...

‘I( 09 QD) = 2 Jl,mYl,m(e’ (P)’ (A2)
I,m

where the angles # and ¢ are the polar angles of the propa-
gation direction f:

sin € cos ¢

n=| sin #sin ¢ (A3)

cos 0

Rather than considering the Cartesian components of 1, we
consider for brevity [69]

8
n,+in, =sin fexp(xip) = + \/{Yl,il(ﬂ,go) (A4)

and

(A5)

41
n,=cos = ?Yl,o(ﬁ,cp).

The corresponding components of the net energy current are
given by
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Jinet) + i];ne‘) => Jz,mjg Y,.(6, @)sin Be*¢d’n  (A6)
I,m
and

I =X jg Y,,(6, @)cos 0d’n. (A7)
I,m

Because of the orthogonality of the spherical harmonics [69]

|87 |4
J)((net) + l.J;net) = F ?Jl’Il, Jinet) = ?JI,O'

(A8)

The condition that the net energy current vanishes thus im-
plies that

Jl:l,m=0’ m=0, +1. (A9)

A vanishing energy current thus requires only that the coef-
ficients J,_;,, vanish. For a vanishing net energy current
JV=0, all coefficients Jim with [#1 can be nonzero. This
means that an energy current given by expansion (A2) with
nonzero coefficients J;,, for />1 gives a vanishing net en-
ergy current, while the energy current J(fi) varies with direc-
tion. In this case the net energy current vanishes, but there is
no equipartitioning.
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